Benha University

Faculty of Engineering (at Shoubra)

Sheet 2 - Sol

I

- 5.22

The produced list of numbers: $1,1,2,3,5,8,13,21,34,55,89$

- 5.25

Searching for the value $J: H, L, J$	Searching for the value $Z: H, L, N, O$
$A, B, C, D, E, F, G, H, I, J, K, L, M, N, O$	$A, B, C, D, E, F, G, H, I, J, K, L, M, N, O$

- 5.53

No. The algorithm will not terminate when $\mathrm{X}=0$.

```
Product \leftarrow 0;
Count \leftarrow 0;
while (Count < X) do {
    Product & Product + Y,;
    Count & Count + 1;
}
```

- 5.54

No. The algorithm will not compute the correct answer when $\mathrm{X}=\mathrm{Y}$.

```
Difference \leftarrow X - Y;
if (Difference = 0)
then {
        print "X equals Y";
}
else {
    if (Difference > 0)
        then {
            print "X is bigger than Y";
        }
        else {
            print "Y is bigger than X";
        }
}
```

- 5.57

The loop invariant ${ }^{1}$ is:
$J \leq Y$ and $Z=X-J$
The stop condition is:
$J \geq Y$
Upon loop termination, the loop invariant will be combined with the stop condition to give:

```
(J \geq Y) and ( }J\leqY\mathrm{ and Z = X - J)
J = Y and Z = X - J
Z = X - Y
```

[^0]Benha University

Faculty of Engineering (at Shoubra)

II Answer the following questions:
1.

a)	b)
$\Theta(n)$	$\Theta(\log n)$

2.

The precondition is:
L is arranged in ascending order
The loop invariant is:
V is greater than any item in L preceding T .
The stop condition is:

$$
V \leq T \text { or } T \text { is last }(L)
$$

The termination argument is:
L contain only a finite number of entries and every loop iteration T advances to the next item; therefore, T will eventually be last (L), which satisfies the stop condition.
3.

Yes, both of them calculate the factorial of a given number N .

a)	b)
Recursive definition of factorial: $n!=n \times(n-1)!, 1!=1$	Iterative definition of factorial: $n!=1 \times 2 \times 3 \times \cdots \times n$

4.

$\Theta(1)$	Calculating $(-1)^{n}$
$\Theta(\log n)$	Binary Search
$\Theta(n)$	Sequential Search
$\Theta(n \log n)$	Quick Sort
$\Theta\left(n^{2}\right)$	Insertion Sort

[^0]: 1 An invariant of a loop is an assertion (claim) that is true before (and after) each iteration of that loop

